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1 Introduction and Preliminaries

In the previous talks we have considered the Abel-Jacobi map AJ : HilbdX/k → PicdX/k for projec-
tive, smooth, irreducible curves X over algebraically closed fields k. In this talk we will study
it in a more general setting. Namely, for a scheme S we will define the Abel-Jacobi map for
proper, finitely presented schemes X over S which which are S-flat. Goal of this talk is to under-
stand its scheme-theoretic fibers. In Proposition 9 we will see that they are given by projective spaces.

Unless stated otherwise, (X,OX) and (S,OS) will be schemes and f : X → S will be a mor-
phism of schemes in this whole talk.

Definition 1. An OX -module is locally of finite presentation if it is quasi-coherent and locally
isomorphic to the cokernel of a homomorphism of type Om

X → On
X .

Definition 2. Let f : X → S proper and of finite presentation and let F an OX -module locally of
finite presentation which is flat over S.

(i) Then F is cohomologically flat over S in dimension 0 if the formation of the direct image
f∗(F) commutes with base change along any morphism of schemes T → S.

(ii) We say that f is cohomologically flat over S in dimension 0 if OX is cohomologically flat over
S in dimension 0.

Example 1. Let k an algebraically closed field, let X a smooth, projective, irreducible curve over
k, let T a scheme over k and let L ∈ Pic(XT ). In the previous talk we saw that the degree map
t → Lt is locally constant. Now, let d = degL > 2g − 2 where g is the genus of the curve. We want
to show that in this case, L is cohomologically flat over Spec k in dimension 0. We assume that
T = Spec(A) is open affine. Let K · = (K0 → K1) be a complex of finitely generated projective
A-modules such that for all A-algebras B,

Hp(K · ⊗A B) ≃ Hp(X,L), p ≥ 0.

We want to show that H1(X,L) = 0, i.e. coker(d0 ⊗A B) = 0. By Nakayama’s lemma it suffices
to show this claim for B = k(p), p ∈ Spec(A). Thus, we may assume that T = Spec k. By Serre
duality

h1(X,L) = h0(X,L∗ ⊗ ωX)

where L∗ is the dual of L and ωX is the canonical line bundle. But deg(ωX) = 2g − 2 and
deg(L∗) < 2− 2g. Thus, h1(X,L) = 0, which shows cohomological flatness in dimension 0.
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2 FIBERS OF THE ABEL-JACOBI MAP

We will now state some basic result on the direct image of OX -modules which are locally of finite
presentation. This statement is used in the proof of Proposition 9.

Theorem 3 (cf. [BLR90, Thm. 8.1.7]). Let f : X → S proper and finitely presented. Let F be an
OX-module of locally finite presentation which is S-flat.

(i) There existst an OS-module Q of locally finite presentation, unique up to canonical isomorphism,
such that there exists an isomorphism of functors

f∗(F ⊗OS
M) ≃ HomOS

(Q,M)

which is fuctorial for all quasi-coherent OS-modules M.

(ii) Taking global sections, there exists an isomorphism of functors

Γ(X,F ⊗OS
M) ≃ HomOS

(Q,M).

(iii) The OS-module Q is locally free if and only if F is cohomologically flat over S in dimension 0.
In this case, Q and f∗(F) are dual to each other and, in particular f∗(F) is locally free.

2 Fibers of the Abel-Jacobi map

Definition 4. For a ringed space (X,OX) we define the sheaf of invertible elements O∗
X as the

presheaf whose local sections are the local sections of OX which are invertible.

It is easily seen that O∗
X is indeed a sheaf. We will now recall some definition and introduce some

notation.

Definition 5. (i) A realtive effective Cartier divisor on X over S is an effective Cartier divisor
D on X such that D → X is a flat morphism of schemes.

(ii) Let Div(X/S) the set of all relative effective Cartier divisors on X/S.

Definition 6. Let f : X → S flat, quasi-compact, quasi-separated and assume that f∗(OX) = OS

holds universally, i.e. it holds after any base change. Assume that f admits a section. Define the
relative Picard functor PicX/S via

PicX/S : (Sch /S)op → (Sets), T 7→ Pic(X ×S T )/Pic(T )

The Abel-Jacobi map. Relative effective Cartier divisors are stable under any base change
S′ → S by [BLR90, Lemma 8.2.6]. This yields a functor

DivX/S : (Sch /S)op → (Sets), S′ 7→ Div(X ×S S′/S′).

We obtain a canonical morphism

AJ : DivX/S → PicX/S , D 7→ OX(D),

the Abel-Jacobi map.
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If X is proper, finitely presented and flat over S, DivX/S is an open subfunctor of the Hilbert functor
HilbX/S by [BLR90, Lemma 8.2.6]. We saw in talk 4 that if X is a projective, smooth, irreducible
curve over an algebraically closed field k, then DivX/S = HilbX/S .

Definition 7. Let C a category admitting fiber products, let F,G : Cop → (Sets) functors and let
a : F → G a morphism of functors. We say that a is representable or F is relatively representable over
G if for every U ∈ Ob(C) and any natural transformation ξ : hu → G the functor hU ×G F is
representable, where hU is the functor HomC(−, U).

Reminder. Let n ∈ N, then

Pn
Z(X) ≃ {(L, α) | L ∈ Pic(X), α : On+1

X ↠ L}/ ≃ .

Projective bundles. For a finitely generated quasi-coherent OS-module F consider the functor

FF : (Sch /S)op → (Sets), T 7→ {(L, α) | L ∈ Pic(T ), α : f∗F ↠ L}/ ≃ .

This functor is representable by a scheme, the so-called projective bundle P(F).

Definition 8. The geometric fiber of a morphism of schemes f : X → S at s ∈ S is defined to be
Xs̄ = F ×S k(s).

Proposition 9 (cf. [BLR90, Prop. 8.2.7]). Let f : X → S proper and of finite presentation and let
S quasi-compact. Assume that f is flat and that its geometric fibers are reduced and irreducible.
Let L be a line bunlde on XT = X ×S T , and let T → Pic(X/S) the morphism corresponding to L.
Then there exists an OT -module which is locally of finite presentation such that DivX/S ×PicX/S

T is
represented by the projective T -scheme P(F).
Furthermore, there is a canonical way to choose F . If L is cohomologically flat in dimensio 0, then
f∗(L) and F are locally free and dual to each other.

Example 2. Let k an algebraically closed field, let f : X → Spec k a projective, smooth, irreducible
curve and let L a line bundle on X = X ×Spec k Spec k of degree > 2g − 2, where g is the genus of
the curve.
By Example 1, L is cohomologically flat in dimension 0. Thus, the fiber of the Abel-Jacobi
map HilbX/S ×PicX/S

Spec k is given by P(F) by Proposition 9, where F is the dual of f∗L. As

f∗L(Spec k) = H0(X,L) is a finite dimensional vector space, F(Spec k) = H0(X,L)∗ is a finite
dimensional vector space. If n denotes its dimesnion, the fiber is given by P(F) = Pn−1

k .
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